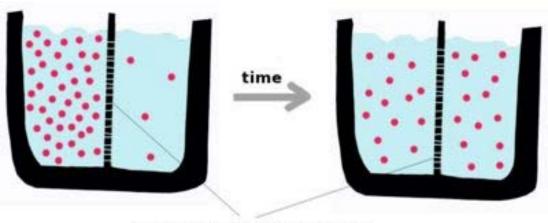
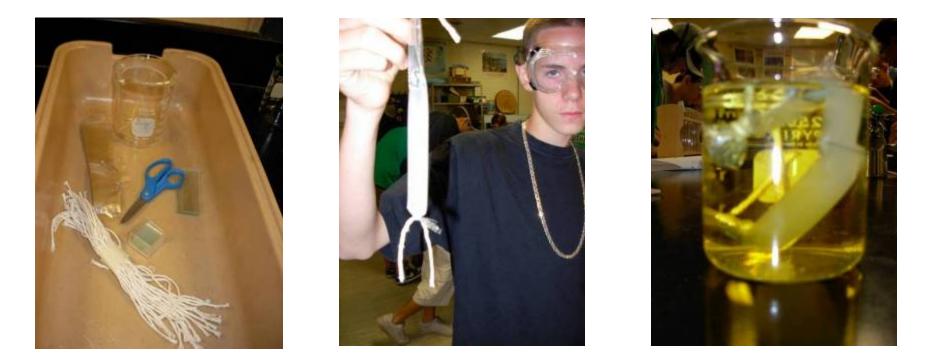
New York State Required Labs – Review

- Diffusion Through A Membrane
- Making Connections
- Beaks of Finches
- Relationships and Biodiversity

Diffusion Through A Membrane <u>indicator</u> – chemically indicates if a substance is present by changing color


iodine = starch indicator solution

<u>**Benedict's solution**</u> = glucose indicator solution – must be heated

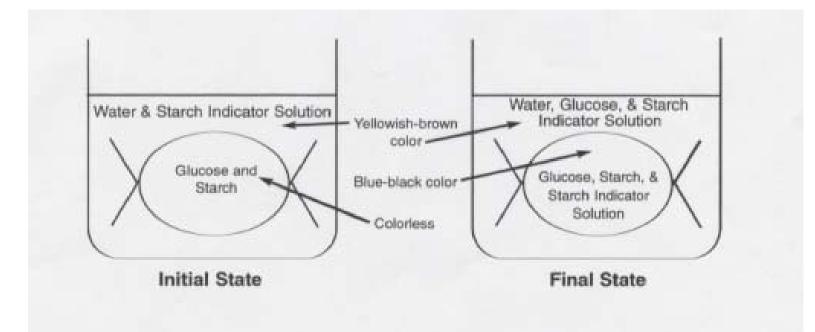


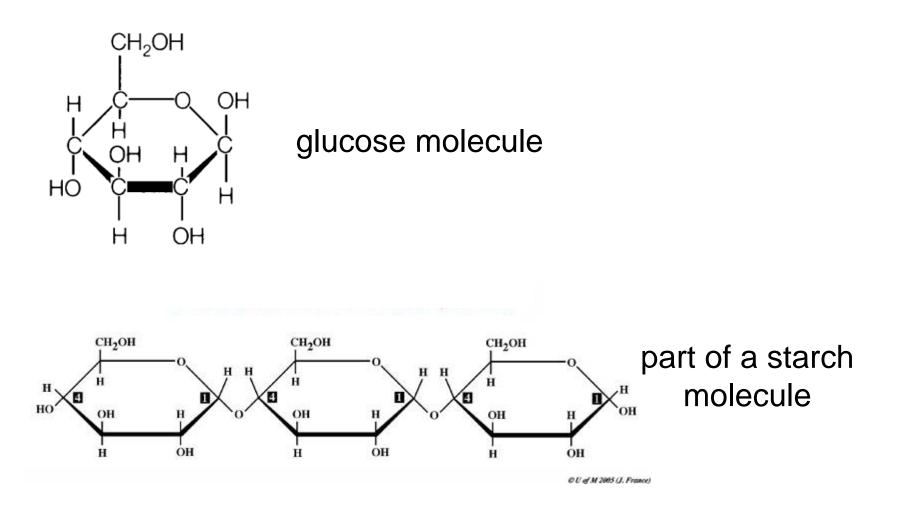
<u>diffusion</u> – movement of molecules from a region of high concentration to a region of low concentration – no energy needed (passive transport)

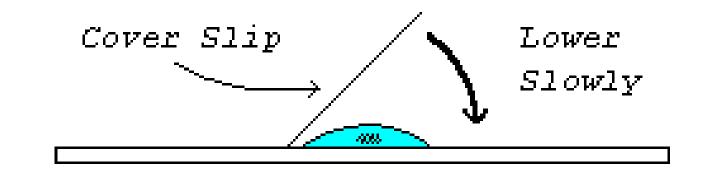
semipermeable membrane

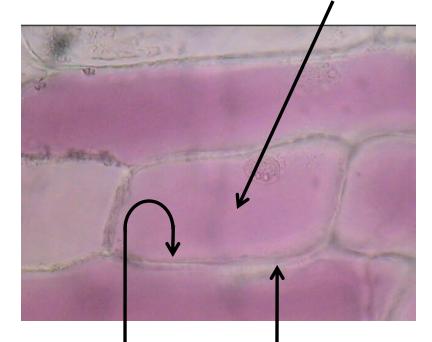
- we used a dialysis tube to simulate a semi-permeable cell membrane
- the dialysis tube was filled with glucose solution and starch solution, sealed and rinsed with water
- it was placed in a beaker with water and iodine and allowed to sit

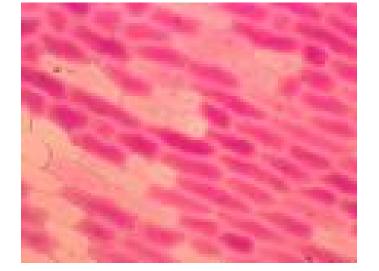
results of starch test – inside and outside of cell





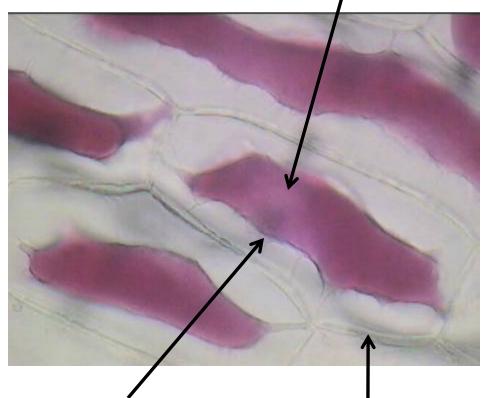

results of glucose test – outside of cell

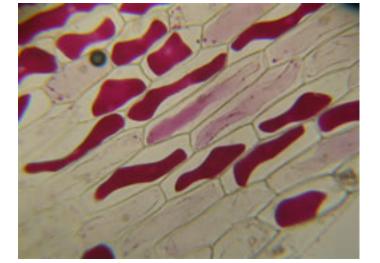



<u>osmosis</u> – diffusion of water across a semipermeable cell membrane from region of high concentration to a region of low concentration – no energy needed (passive transport)

cytoplasm

cell membrane | cell wall red onion cells in tap water

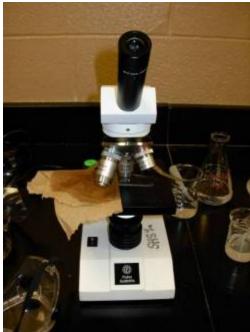




bathing the cells in 10% NaCl = salt water, by "wicking" it through

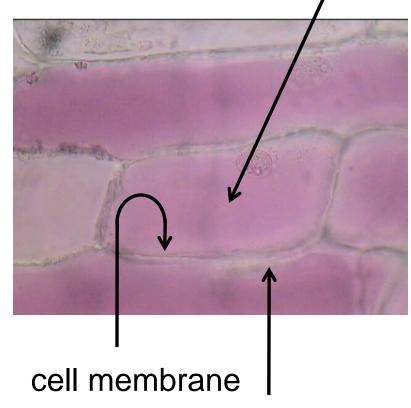
NaCl Forceps Slide Coverslip Coverslip Slide Piece of toweling Specimen in Specimer water.

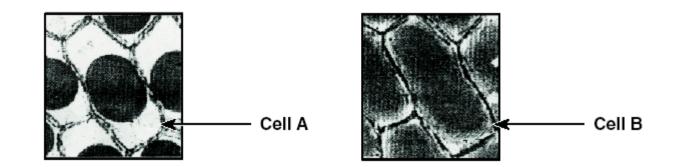
Diffusion Through a Membrane cytoplasm



red onion cells in salt water

cell membrane

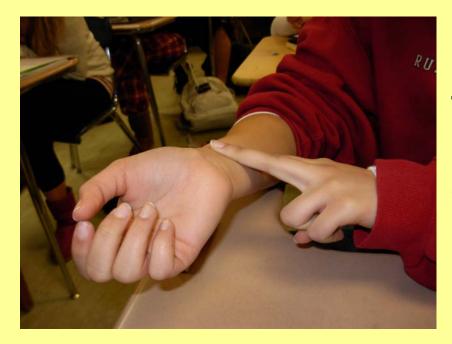

cell wall


bathing the cells in distilled water, by "wicking" it through

cytoplasm

red onion cells in distilled water – returned to normal

cell wall

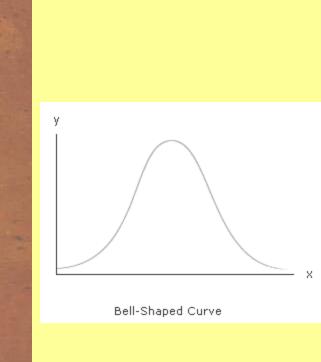

Which is in distilled water and which is in salt water?

Applications –

- salt on roads to melt snow
- intravenous saline solutions
- salty foods make you thirsty
- salt on slugs to kill them
- salty foods do not spoil as easily
- gargling with salt water
- digestion of starch to glucose

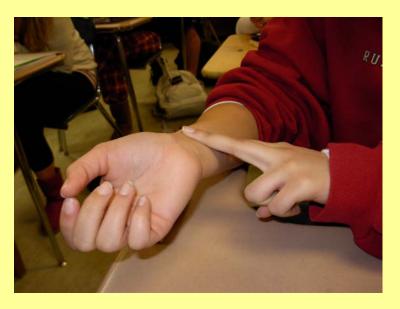
Making Connections

Making Connections – Part A: Looking for Patterns A1. What Is Your Pulse Rate?


<u>pulse</u> – results from expansion of arteries each time your heart beats to send a surge of blood through your body

measured pulse three times and found average pulse rate

tallied class average pulse rates


Making Connections – Part A: Looking for Patterns A1. What Is Your Pulse Rate?

<text><text><text><list-item><list-item></list-item></list-item></text></text></text>	and the second	Use the average pulse rate for ea					three period	·	Director of the local diversion of the local	
Tange of averages Top Top Top Top Number of students 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0	STATISTICS.	c	lass Res	ults: Aver	age Pulse	Rates	_	_		
		(range of averages)	< 51	51-60	61-70	11.9	81-90	> 90		
De die information in the data table to prepare a hieragram of the crass readily. On the processes 9 could a uite for the histogram 9 choice a site on that we appropriate scale on the vertical tast 9 choice acts readily. Control to the processes 9 could be readily and mark on appropriate scale on the vertical tast 9 could be readily and mark on appropriate scale on the vertical tast 9 could be readily and mark on appropriate scale on the vertical tast 9 could be readily and the hight of each order the height of each order to the formation of the trans readily. On the processes 9 could be readily and the height of each order to the vertical tast 9 could be readily and 9 could be read	Contraction of the	Number of students in this range	1	6	10	5	. 1	1.1	- 1	
$\left(\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	1-10- 10-	Use the information in the data • Provide a title for the • Label the vertical and • When you have deter	histogram is and mark mained the	i. k an approp height of	riate scale	on the ve m, shade i	tical mis.		hom.	
51 51-50 61.70 71-50 81-90 > 90		Histogram Title:/*	reage	- CULS						
		an at	1 51-							the state of the s

Making Connections – Part A: Looking for Patterns A1. What Is Your Pulse Rate?

- after exercise, pulse increased
- heart beats faster increasing circulation to carry more oxygen and nutrients to the cells of the body
- breathe faster to obtain more O₂ and release CO₂
- respiratory and circulatory systems working together to maintain homeostasis

Making Connections — Part A: Looking for Patterns A2. How Does Fatigue Affect Muscle Performance?

- squeezed clothespin for one minute counted
- squeezed again for one minute using same hand
- the second time number of squeezes was lower due to <u>muscle fatigue</u>

claims are accepted if there is evidence to support them

Student A

claims more clothespin squeezes in 1 minute if exercises 1st – faster pulse rate, blood getting to muscles faster

Student B

claims more clothespin squeezes in 1 minute if rests 1st – exercise uses energy - resting person will have more energy

conduct a controlled experiment to determine which claim is correct

Experimental Design

Question: Can you squeeze a clothespin more times in one minute if you exercise or rest beforehand?

<u>Hypothesis:</u> (tentative statement about the expected relationship between the variables) You can squeeze a clothespin more times in one minute if you rest first.

<u>**Title:</u>** The Effect of Exercise and Rest on Clothespin Squeezing Rate</u>

Experimental Design

Dependent variable: (what you measure) number of times the clothespin can be squeezed in one minute

Independent variable: (the one we vary to see how it affects the dependent variable) amount of exercise

Variables that must be controlled (kept constant):

type of clothespin time of exercise/rest same hand for each trial

fingers used time of squeezing

* use maximum sample size and number of trials in experiment *

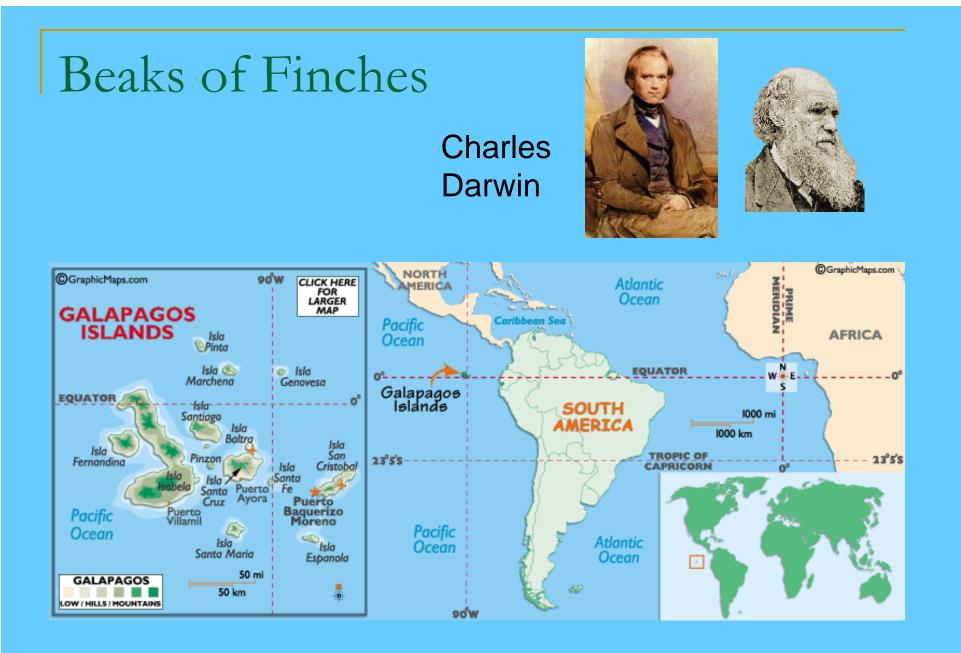
Experimental Design

 half of class rests and half of class exercises – then all count number of clothespin squeezes in one minute OR

 whole class rests and counts number of clothespin squeezes in one minute – then whole class exercises and counts number of clothespin squeezes

Final Report

- Title
- Hypothesis
- Materials and Methods materials used and what you did
- Data Collected includes data tables and graphs
- Discussion and Conclusions does data support or refute hypothesis and explanation
- Suggestions for Improvement sources of error, variables that must be controlled and that influenced outcome
- Suggestions for further research new research questions


Peer Review

Defending findings and conclusions to peers:

- presentation
- address final report
- answer questions
- visual aids

Results and conclusions accepted if they can be repeated by other scientists

Darwin's finches show great <u>variation</u> in beak <u>adaptations</u> – shapes and sizes - due to isolation of bird populations on islands with different kinds and amounts of food

- different tools represent different beaks
- seeds (small and large) represent food
- tray represents the island
- cup represents finch stomach

Round One: No Competition, Original Island

- feeding with no competition one person at a time
- feeding on small seeds
- as many as possible in given time
- repeated twice with each person = 4 trials total
- average of 13 or greater survived
- average of less than 13 moved to new island

	Contractor and	Seeds Collected
Partner #1	Trial #1	o hughes by
	Trial #2	
Partner #2	Trial #3	明天時代の時
	Trial #4	
	Average	

<u>competition</u> – interaction between two or more individuals to obtain a resource that is in limited supply

Round Two: Competition

on original island with small seeds (if survived round 1)
on new island with large seeds (if did not survive round 1)
competition – feeding with another team from same dish

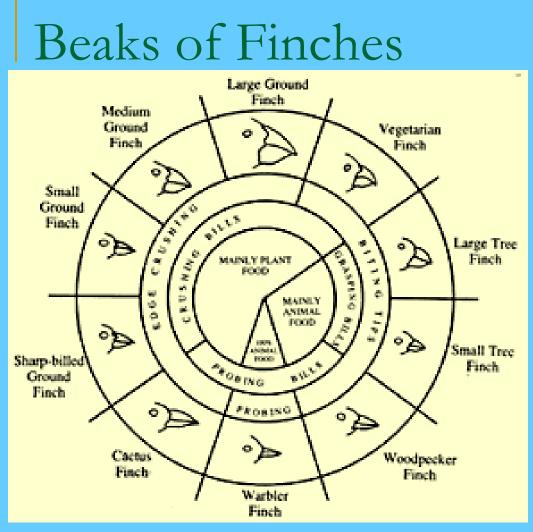
Round iginal island (s	Two: Feeding wi mall seeds)	th Competition New island (large seeds)
in the second	and the support of the	Seeds Collected
Partner #1	Trial #1	
	Trial #2	THE REPORT OF THE REAL
Partner #2	Trial #3	
	Trial #4	
	Average	

Round Three: Increased Competition

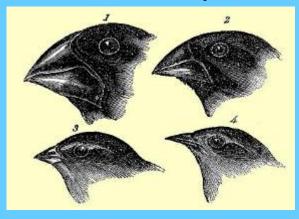
- competing with all other species left on your island
- all successful at feeding on small seeds at one dish
- all successful at feeding on large seeds at another dish

Original island (small seeds)		New island (large se		
	And and and	Seeds Collected		
Partner #1	Trial #1	A STREET WAR		
and day 5	Trial #2			
Partner #2	Trial #3			
	Trial #4			
E States in	Average			

Beaks of Finches


This activity simulates concepts involved in natural selection:

<u>variation</u> – different beak types and seed sizes
 <u>competition</u> – more than one bird feeding at a time
 <u>struggle for survival</u> – each bird trying to get enough to survive
 <u>adaptation</u> – particular characteristics of each beak
 <u>environment</u> – the birds, food and island
 <u>selecting agent</u> – the size of seed available


Beaks of Finches

Overall:

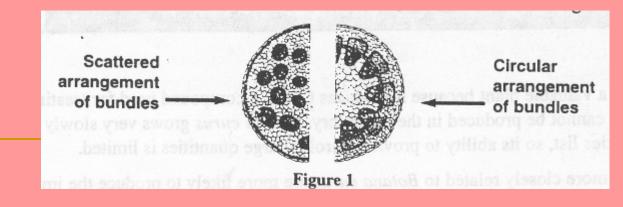
- some birds had beaks that allowed them to survive on small seeds
 - if a bird survives it can reproduce
 - it may then pass its traits on to its offspring
- other birds could not survive on small seeds, but could survive on large seeds
- still other birds could not survive on either size seed
- over time <u>adaptive radiation</u> occurred new species evolved from a common ancestor – each new species occupies a different habitat or ecological niche (in this case with different food)

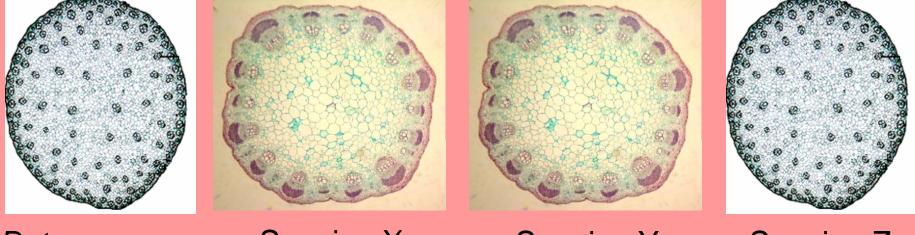
Different finches have beaks with different characteristics that allow them to compete successfully on different types of food – each species has its own niche, which limits competition

In order for a species to survive, the appropriate type of food must be available.

- Botana curus hypothetical plant
- used to make Curol for treating cancer
- Botana curus endangered, grows slowly
- related species: X, Y and Z
- will determine which is most closely related to *Botana Curus* using structural and molecular evidence
- will decide which species (X, Y or Z) is most likely to produce Curol

<u>Structural Evidence – Test 1:</u> <u>Structural Characteristics of Plants</u>


<u>Structural Evidence – Test 2:</u> <u>Structural Characteristics of Seeds</u>


Relationships and Biodiversity <u>Structural Evidence – Test 3:</u> <u>Microscopic Internal Structure of Stems</u>

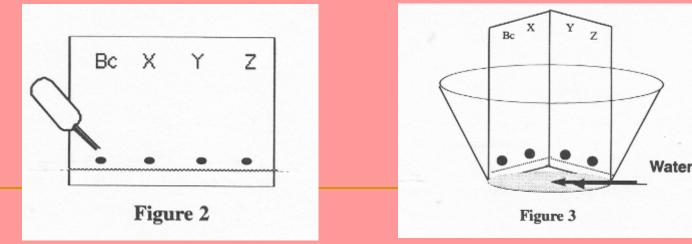
examined cross section of stem under microscope to determine arrangement of vascular bundles

<u>Structural Evidence – Test 3:</u> <u>Microscopic Internal Structure of Stems</u>

Botana curus scattered bundles Species X circular bundles Species Y circular bundles Species Z scattered bundles

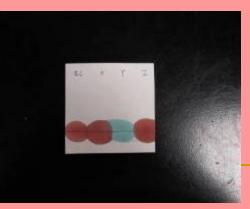
Hypothesis after examining structural evidence is that *Botana curus* is most closely related to species Z.

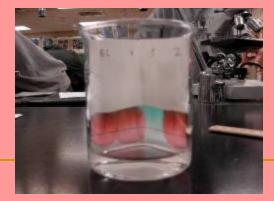
Relationships and Biodiversity Molecular Evidence – Test 4:


Paper Chromatography to Separate

Plant Pigments

pigments – absorb sunlight in plants,

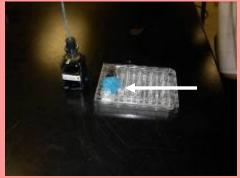

give plants color, ex: chlorophyll


- pigments extracted from each species
- placed on chromatography paper
- chromatography paper placed in water

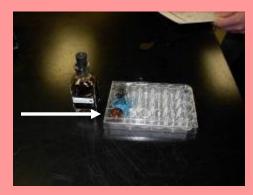
Relationships and Biodiversity <u>Molecular Evidence – Test 4:</u> <u>Paper Chromatography to Separate</u> <u>Plant Pigments</u>

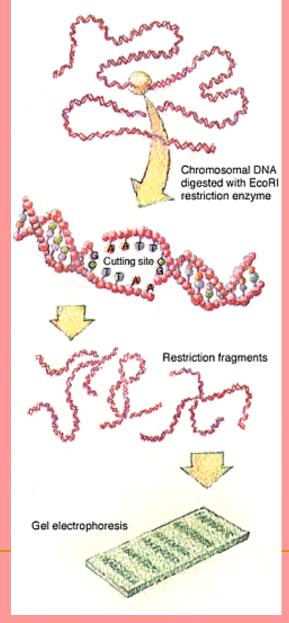
<u>Molecular Evidence – Test 4:</u> <u>Paper Chromatography to Separate</u> <u>Plant Pigments</u>

Relationships and Biodiversity <u>Molecular Evidence – Test 5:</u> <u>Indicator Test for Enzyme M</u>

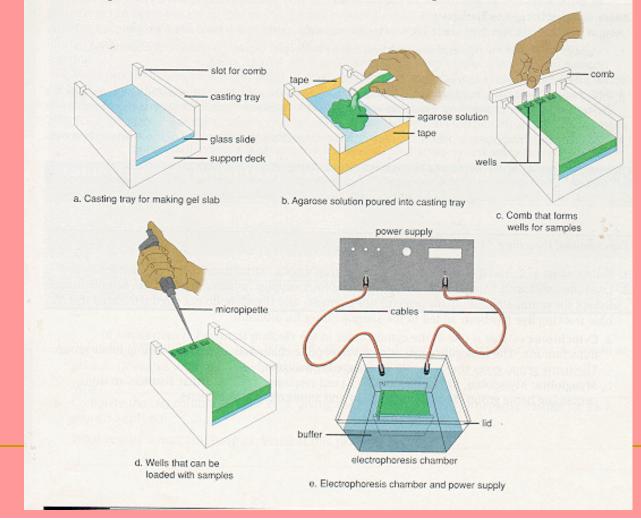


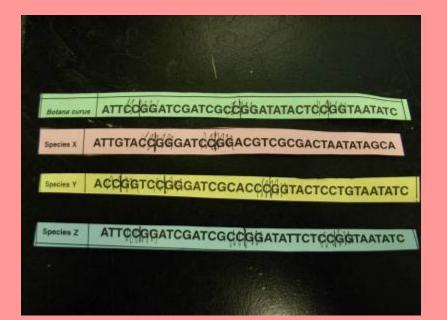
Relationships and Biodiversity <u>Molecular Evidence – Test 5:</u> <u>Indicator Test for Enzyme M</u>


Botana curus enzyme M present Species X enzyme M absent



Species Y enzyme M present


> Species Z enzyme M present

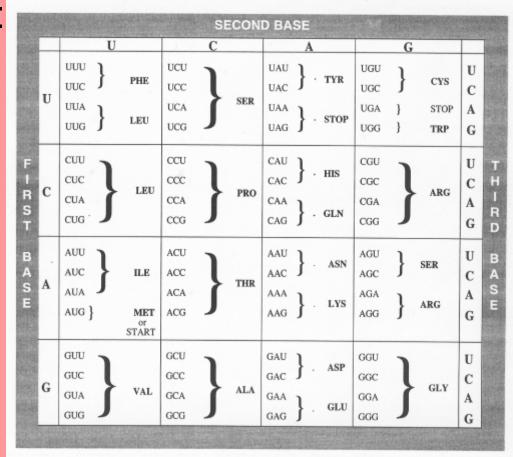

<u>Molecular Evidence –</u> <u>Test 6: Using Simulated</u> <u>Gel Electrophoresis</u> <u>To Compare DNA</u>

Relationships and Biodiversity Molecular Evidence – Test 6: Using Simulated Gel Electrophoresis To Compare DNA

<u>Molecular Evidence – Test 6: Using Simulated</u> <u>Gel Electrophoresis To Compare DNA</u>

and south and the		Table > Resultated Time		-
(Call Write Hard Street	No. Sharan Kerran A	Car Attack	Accession 1	No. of Concession, Name
	OCA	GTEGERACTAATAT	GGAC	-
				-
0	TACTCCTGTAATATC			+
				*
OGATCOATCOCC	GGGATCGCACCC		BGATOGATOGC	-
GGATCGATCGCC			GGATATACTCC	-
QQTAATATC		ATTOTACC	GGTAATATC	7. 4
	11 II I	GOGATCO		
ATTCC	GOTCC		ATTCC	
	ACC			-
		+ Positive Pa		1

<u>Molecular Evidence – Test 6: Using Simulated</u> <u>Gel Electrophoresis To Compare DNA</u>



Relationships and Biodiversity Molecular Evidence – Test 7: Translating the DNA Code to Make a Protein

Botana curus	CAC	GTG	GAC	TGA	GGA	CTC	CTC
Sequence of bases in mRNA produced	GUG	CAC	CUG	ACU	CCU	GAG	GAG
Sequence of animo acids in the protein	VAL	HIS	LEU	THR	PRO	GLU	GLU
Species X	CAC	GTG	GAC	AGA	GGA	CAC	CTC
Sequence of bases in mRNA produced	GUG	CAC	CUG	UCU	CCU	GUG	GAG
Sequence of amino acids in the protein	_VAL	HIS	LEU	SER	PRO	VAL	GLU
Species Y	CAC	GTG	GAC	AGA	GGA	CAC	CTC
Sequence of bases in mRNA produced	GUG	CAC	CUG	UCU	CCU	GUG	GAG
Sequence of amino acids in the protein	VAL	HIS	LEU	SER	PRO	VAL	GLU
Species Z	CAC	GTA	GAC	TGA	GGA	CTT	CTC
Sequence of bases in mRNA produced	GUG	CAC	CUG	ACU	CCU	GAA	GAG
Sequence of amino acids in the protein	VAL	HIS	LEU	THR	PRO	GLU	GLU

<u>Molecular Evidence –</u> <u>Test 7: Translating</u> <u>the DNA Code to</u> <u>Make a Protein</u> Universal Genetic Code Chart

Messenger RNA codons and the amino acids they code for.

Note: Amino acid abbreviations are in bold type (e.g., PHE, LEU, SER, etc.)

Relationships and Biodiversity, Teacher's Guide, page 10

Sample Completed Table 1: Comparison of Botana curus with Species X, Y, and Z

	S	tructural Evidenc	e	Molecular Evidence					
Species	Structural Characteristics of Plants	Structural Characteristics of Seeds	Microscopic Stem Structure	Paper Chromatography	Test for Enzyme M	Differences in Amino Acid Sequences	Gel Electrophoresis DNA Banding Pattern		
Botana curus	Answers will vary.	Answers will vary.	Scattered bundles	Blue Yellow Pink	Present		4 bands 5, 9, 11, 12		
Species X	Answers will vary.	Answers will vary.	Circular bundles	Blue Yellow Pink	Absent	Two differences: SER not THR VAL not GLU	3 bands 7, 8, 22		
Species Y	Answers will vary.	Answers will vary.	Circular bundles	Blue Yellow (see below*)	Present	Two differences: SER not THR VAL not GLU	4 bands 3, 5, 12, 17		
Species Z	Answers will vary.	Answers will vary.	Scattered bundles	Blue Yellow Pink	Present	No difference	4 bands 5, 9, 11, 12		

- Which species X, Y or Z is most similar to Botana curus and is most likely to produce Curol?
- Which kind of evidence structural or molecular is most helpful to make decisions about relationships between species?
- Which evolutionary tree diagram best shows the relationships between species used in this lab?

biodiversity – a measure of the number and types of organisms in a location

helps maintain ecosystem stability
useful to humans for food, medicine, clothing, shelter, oxygen, soil fertility, future genetic variation, enjoyment
we have no right to destroy

<u>extinction</u> – no more of a given species left on earth

causes of extinction and loss of biodiversity:

- destruction of natural habitats
- pollution
- overharvesting
- invasive species
- removal of predators

Human activities are reducing biodiversity and are causing the extinction of real organisms that have real uses, like the hypothetical *Botana curus*. Many people feel that it is important to preserve biodiversity. Some do not feel that it is worth the cost and effort.

New York State Required Labs

- Diffusion Through A Membrane
- Making Connections
- Beaks of Finches
- Relationships and Biodiversity